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A quantum computer can simulate efficiently any 
physical process that occurs in Nature.

(Maybe. We don’t actually know for sure.)
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Two fundamental ideas

(1) Quantum complexity
Why we think quantum computing is powerful.

(2) Quantum error correction
Why we think quantum computing is scalable.



A complete description of a typical quantum state of just 300 qubits 
requires more bits than the number of atoms in the visible universe. 



Why we think quantum computing is powerful
We know examples of problems that can be solved efficiently by a 
quantum computer, where we believe the problems are hard for classical 
computers. Factoring is the best known example. No efficient classical 
algorithm for factoring is known, and not for lack of trying. Factoring 
numbers which are thousands of bits long is out of reach classically, yet 
eventually will be feasible quantumly.

Consider the probability distribution of measurement outcomes for n-qubits 
in a quantum computer. Complexity theory arguments, based on plausible 
assumptions, indicate that no efficient classical algorithm can efficiently 
sample from this distribution. 

We don’t know how to simulate a quantum computer efficiently using a 
digital (“classical”) computer. It is not for lack of trying. The cost of the best 
simulation algorithm rises exponentially with the number of qubits. 

The power of quantum computing is limited. For example, we don’t believe 
that quantum computers can efficiently solve worst-case instances of NP-
hard optimization problems (e.g., the traveling salesman problem). 



Quantum hardware: state of the art
IBM Quantum Experience in the cloud: now 16 qubits (superconducting circuit). 
20 qubits soon, 50-qubit device “built and measured.”

Google 22-qubit device (superconducting circuit), 49 and 72 qubits built. 

ionQ: 32-qubit processor planned (trapped ions), with all-to-all connectivity.

Microsoft: is 2018 the year of the Majorana qubit?

Harvard 51-qubit quantum simulator (Rydberg atoms in optical tweezers). 
Dynamical phase transition in Ising-like systems; puzzles in defect (domain wall) 
density.

UMd 53-qubit quantum simulator (trapped ions). Dynamical phase transition in 
Ising-like systems; high efficiency single-shot readout of many-body correlators. 

And many other interesting platforms … spin qubits, defects in diamond (and 
other materials), photonic systems, …

There are other important metrics besides number of qubits; in particular, the 
two-qubit gate error rate (currently > 10-3) determines how large a quantum 
circuit can be executed with reasonable signal-to-noise. 



The NISQ Era

The (noisy) 50-100 qubit quantum computer is coming soon.
(NISQ = noisy intermediate-scale quantum computer)

NISQ devices cannot be simulated by brute force using the 
most powerful currently existing supercomputers. 

NISQ will be an interesting tool for exploring physics. It might
also have useful commercial applications. But we’re not sure 
about that.

NISQ will not change the world by itself. Rather it is a step 
toward more powerful quantum technologies of the future. 

Potentially transformative scalable quantum computers may 
still be decades away. We’re not sure how long it will take.



Qubit “quality”
The number of qubits is an important metric, but it is not the only thing that matters. 

The quality of the qubits, and of the “quantum gates” that process the qubits, is 
also very important. All quantum gates today are noisy, but some are better than 
others. Qubit measurements are also noisy.

For today’s best hardware (superconducting circuits or trapped ions), the 
probability of error per (two-qubit) gate is about 10-3, and the probability of error per 
measurement is about 10-2 (or better for trapped ions). We don’t yet know whether 
systems with many qubits will perform that well. 

Naively, we cannot  do many more than 1000 gates (and perhaps not even that 
many) without being overwhelmed by the noise. Actually, that may be too naïve, 
but anyway the noise limits the computational power of NISQ technology.

Eventually we’ll do much better, either by improving (logical) gate accuracy using 
quantum error correction (at a hefty overhead cost) or building much more accurate 
physical gates, or both. But that probably won’t happen very soon. 

Other important features: The time needed to execute a gate (or a measurement). 
E.g., the two-qubit gate time is about 40 ns for superconducting qubits, 100 µs for 
trapped ions, a significant difference. Also qubit connectivity, fabrication yield, …



Quantum Speedups?

When will quantum computers solve important problems that are 
beyond the reach of the post powerful classical supercomputers?

We should compare with post-exascale classical hardware, e.g. 10 
years from now, or more (> 1018 FLOPS).

We should compare with the best classical algorithms for the same 
tasks. 

Note that, for problems outside NP (e.g typical quantum simulation 
tasks), validating the performance of the quantum computer may 
be difficult. 

Even if classical supercomputers can compete, the quantum 
computer might have advantages, e.g. lower cost and/or lower 
power consumption. 



Quantum Supremacy!

???



Quantum optimizers
Eddie Farhi: “Try it and see if it works!”
We don’t expect a quantum computer to solve worst case instances of NP-hard 
problems, but it might find better approximate solutions, or find them faster. 

Hybrid quantum/classical algorithms. 
Combine quantum evaluation of an 
expectation value with a classical feedback 
loop for seeking a quantum state with a 
lower value. 

Quantum approximate optimization algorithm (QAOA). 
In effect, seek low-energy states of a classical spin glass.

Variational quantum eigensolvers (VQE). 
Seek low energy states of  a quantum many-body system with a local Hamiltonian 
H. (Much easier than algorithms which require simulation of time evolution 
governed by H.)

Classical optimization algorithms (for both classical and quantum problems) are 
sophisticated and well-honed after decades of hard work. Will NISQ be able to do 
better?



How quantum testbeds might help
Peter Shor: “You don’t need them [testbeds] to be big enough to solve useful 
problems, just big enough to tell whether you can solve useful problems.”

Classical examples:
Simplex method for linear programming: experiments showed it works well in 
practice before theorists could explain why.

Metropolis algorithm: experiments showed it’s useful for solving statistical 
physics problems before theory established criteria for rapid convergence.

Deep learning. Mostly tinkering so far, without much theory input.

Possible quantum examples:
Quantum annealers, approximate optimizers, variational eigensolvers, … playing 
around may give us new ideas.

But in the NISQ era, imperfect gates will place severe limits on circuit size. In the 
long run, quantum error correction will be needed for scalability. In the near 
term, better gates might help a lot!

What can we do with, say, < 100 qubits, depth < 100? We need a dialog between 
quantum algorithm experts and application users. 



Quantum simulation
We’re confident strongly correlated (highly entangled) materials and large 
molecules are hard to simulate classically (because we have tried hard and have 
not succeeded). 

Quantum computers will be able to do such simulations, though we may need to 
wait for scalable fault tolerance, and we don’t know how long that will take. 

Potential (long-term) applications include pharmaceuticals, solar power 
collection, efficient power transmission, catalysts for nitrogen fixation, carbon 
capture, etc. These are not likely to be fully realized in the NISQ era.

Classical computers are especially bad at simulating quantum dynamics ---
predicting how highly entangled quantum states change with time. Quantum 
computers will have a big advantage in this arena. Physicists hope for 
noteworthy advances in quantum dynamics during the NISQ era. 

For example: Classical chaos theory advanced rapidly with onset of numerical 
simulation of classical dynamical systems in the 1960s and 1970s. Quantum 
simulation experiments may advance the theory of quantum chaos. Simulations 
with ~ 100 qubits could be revealing, if not too noisy.



Quantum annealing
The D-Wave machine is a (very noisy) 2000-qubit quantum annealer (QA), which solves 
optimization problems. It might be useful. But we have no convincing theoretical 
argument that QAs are useful, nor have QA speedups been demonstrated experimentally. 

QA is a noisy version of adiabatic quantum computing (AQC), and we believe AQC is 
powerful. Any problem that can be solved efficiently by noiseless quantum computers can 
also be solved efficiently by noiseless AQC, using a “circuit-to-Hamiltonian map.”

But in contrast to the quantum circuit model, we don’t know whether noisy AQC is 
scalable. Furthermore,  the circuit-to-Hamiltonian map has high overhead: Many more 
qubits are needed by the (noiseless) AQC algorithm than by the corresponding quantum 
circuit algorithm which solves the same problem. 

Theorists are more hopeful that a QA can achieve speedups if the Hamiltonian has a “sign 
problem” (is “non-stoquastic”). Present day QAs are stoquastic, but non-stoquastic
versions are coming soon. 

Assessing the performance of QA may already be beyond the reach of classical simulation, 
and theoretical analysis has not achieved much progress. Further experimentation should 
clarify whether QAs actually achieve speedups relative to the best  classical algorithms. 

QAs can also be used for solving quantum simulation problems rather than classical 
optimization problems (D-Wave, unpublished).



Noise-resilient quantum circuits
For near-term applications, noise-resilience is a key consideration in quantum 
circuit design (Kim 2017).

For a generic circuit with G gates, a single faulty gate might cause the circuit to 
fail. If the probability of error per gate is not much larger than 1/G, we have a 
reasonable chance of getting the right answer. 

But, depending on the nature of the algorithm and the circuit that implements it, 
we might be able to tolerate a much larger gate error rate. 

For some physical simulation problems, a constant probability of error per 
measured qubit can be tolerated, and the number of circuit locations where a 
fault can cause an error in a particular qubit is relatively small. This could happen 
because the circuit has low depth, or because an error occurring at an earlier 
time decays away by a later time. 

Circuits with good noise-resilience (based on tensor network constructions like 
MERA) are among those that might be useful for solving quantum optimization 
problems using variational quantum eigensolvers (VQE), improving the prospects 
for outperforming classical methods during the NISQ era (Kim and Swingle 2017). 



The steep climb to scalability
Long-lived logical qubits, protected by quantum error correction, are likely to be 
realized in the next few years. 

But NISQ-era quantum algorithms will need to tolerate noise. Fully fault-tolerant 
quantum computing may still be decades away. We don’t really know how long it will 
take … We may need platforms supporting millions of physical qubits, or more, a very 
big leap from where we are now. (“Quantum Chasm” ≅ “NISQ Risk”)

Lower gate error rates will substantially reduce the overhead cost of fault tolerance, 
and also extend the reach of quantum algorithms which do not use error correction. 
Topological quantum computing (being aggressively pursued by Microsoft) is one 
aspirational approach to achieving much lower error rates.

Platforms with faster gates have shorter time to solution, all else being equal. This 
speed advantage will become more important in the longer term. 

Significant advances, in both basic quantum science and systems engineering, will be 
needed to achieve scalable FTQC.  Because we have so far to go, new insights and 
developments could substantially alter the outlook for scalability.

We tend to be too optimistic about the short run, too pessimistic about the long run. 



Digital vs. Analog quantum simulation
An analog quantum simulator is a quantum system of many qubits whose 
dynamics resembles the dynamics of a model system we wish to study. A digital 
quantum simulator is a gate-based universal quantum computer, which can be 
used to simulate any physical system of interest when suitably programmed.

Analog quantum simulation has been an active research area for 15 years or 
more; digital quantum simulation is just getting started now.

Analog platforms include: ultracold (neutral) atoms and molecules, trapped 
ions, superconducting circuits, etc.  These same platforms can be used for 
circuit-based computation as well.

Although they are becoming more sophisticated and controllable, analog 
simulators are limited by imperfect control. They are best suited for studying 
“universal” properties of quantum systems which are hard to access in classical 
simulations, yet sufficiently robust to be accessible using noisy quantum 
systems.

Eventually, digital (circuit-based) quantum simulators will surpass analog 
quantum simulators for studies of quantum dynamics, but perhaps not until 
fault tolerance is feasible. 



Quantum simulation of quantum field theories. Why?

QFT encompasses all fundamental interactions, possibly excluding 
gravity. 

Can quantum computers efficiently simulate any process that 
occurs in Nature? (Quantum Church-Turing thesis.)

YES and NO are both exciting answers!

Event generators for QCD, etc.

Simulations of nuclear matter, etc. 

Exploration of other strongly coupled theories. 

Stepping stone to quantum gravity.

Characterizing computational complexity of quantum states. 

New insights!



Prototypical quantum simulation task
(1) State preparation. E.g., incoming scattering state.

(2) Hamiltonian evolution. E.g. Trotter approximation.

(3) Measure an observable. E.g., a simulated detector.

Goal: sample accurately from probability distribution of outcomes. 

Determine how computational resources scale with: error, system size, particle 
number, total energy of process, energy gap, …

Resources include: number of qubits, number of gates, …

Hope for polynomial scaling! Or even better: polylog scaling. 

Need an efficient preparation of initial state.

Approximating a continuous system incurs discretization cost (smaller lattice 
spacing improves accuracy).

What should we simulate, and what do we stand to learn?



Preparing the ground state of a local Hamiltonian
Can be NP-hard even for a classical spin glass.

And even harder (QMA-hard) for some quantum systems, even in 1D. 

But if the state/process exists in Nature, we can hope to simulate it (Quantum 
Church-Turing thesis).

Same goes for Gibbs states (finite temperature and chemical potential) and 
states far from equilibrium. 

Where did the observed state of our universe come from? That’s a question 
about cosmology …

Prototypical ground-state preparation: prepare ground state for an easy case 
(e.g., free theory or strong-coupling limit), then adiabatically change the 
Hamiltonian. Alternatively, we might find a tensor-network approximation via a 
classical variational algorithm, which can then be compiled as a quantum circuit. 



Sources of error?
Nonzero lattice spacing a. 

Finite spatial volume V.

Discretized fields and conjugate momenta.

Nonzero Trotter step size for simulation of time evolution.

(Diabatic) errors during (adiabatic) state preparation.

These sources of error determine how resources scale with 
accuracy for the case of an ideal (noiseless) quantum circuit. We 
also need to worry about noise in (logical) gates. 



Quantum field theory in one spatial dimension:
When can it be simulated classically?

For a theory with a mass gap, low energy states are not highly entangled. These 
states admit a succinct classical description as matrix-product states (MPS) with 
a relatively low bond dimension. 

After a quench, a slightly entangled state becomes more entangled as it evolves. 
The bond dimension needed in an MPS description grows, and classical 
simulation may become infeasible if the energy density is nonzero.

What about scattering states? At relatively low energy, only a few particles can 
be created in a collision; the entanglement remains small, and a time-dependent 
MPS (TEBD) classical computation may provide an accurate description, even at 
strong coupling (where Feynman diagram perturbation theory fails).

At high energy, many particles, and much entanglement, can be created; classical 
simulation may become intractable, but quantum simulation is still efficient 
(Jordan, Lee, JP).

Even for non-relativistic particles, multiple scattering events can build up enough 
entanglement for classical simulation to be hard (the problem becomes “BQP-
complete” --- Jordan, Krovi, Lee, JP).



Challenges and Opportunities in quantum simulation

Improving resource costs, greater rigor.

Better regulators: e.g., smearing, improved lattice Hamiltonian, 
tensor network methods, … 

Simulations with near-term quantum devices?

Scattering of topological defects as probe of nonperturbative
physics.

Gauge fields, QCD, standard model, nuclear matter.

Massless particles, chiral fermions, SUSY.

Conformal field theory, holography, chaos.

Alternative paradigms, e.g. conformal bootstrap.

Fresh approaches to noise suppression in quantum simulation.



Quantum speedups in the NISQ era and beyond

Can noisy intermediate-scale quantum computing (NISQ) surpass exascale classical 
hardware running the best classical algorithms?

Near-term quantum advantage for useful applications is possible, but not guaranteed. 

Hybrid quantum/classical algorithms (like QAOA and VQE) can be tested.

Near-term algorithms should be designed with noise resilience in mind. 

Quantum dynamics of highly entangled systems is especially hard to simulate, and is 
therefore an especially promising arena for quantum advantage. 

Experimentation with quantum testbeds may hasten progress and inspire new algorithms.

NISQ will not change the world by itself. Realistically, the goal for near-term quantum 
platforms should be to pave the way for bigger payoffs using future devices. 

Lower quantum gate error rates will lower the overhead cost of quantum error correction, 
and also extend the reach of quantum algorithms which do not use error correction.

Truly transformative quantum computing technology may need to be fault tolerant, and so 
may still be far off. But we don’t know for sure how long it will take. Progress toward fault-
tolerant QC must continue to be a high priority for quantum technologists.
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Best classical algorithms: cautionary tales
Boson sampling: From 30 photons and 500 modes to 50 photons and 2500 modes (Neville et 
al. 2017).

Random circuits: Simulating 49 qubits with TB rather then PB memory (IBM 2017) --- trading 
depth and space.

Best approximation ratio for Max E3LIN2 (with bounded occurence D) achieved by QAOA at 
level p=1 (Farhi et al. 2014), later surpassed by classical all-star team.

D-Wave evidence for constant factor speedup weakens when quantum annealer is compared 
with better classical algorithms. 

Randomized classical matrix inversion can compete with quantum in some parameter regimes 
(Le Gall).

Tensor network methods for quantum many-body physics and chemistry keep improving (MPS, 
PEPS, MERA, tensor RG). 

Are physically relevant quantum problems really classically hard, even if BQP ≠ BPP?

Dynamics seems promising, but MBL (many-body localization) may be classically easy, and ETH 
(eigenstate thermalization hypothesis = strong quantum chaos) may be physically boring 
(wisecrack by Frank Verstraete). 



Quantum machine learning?
(Classical) deep learning, e.g. restricted Boltzmann machines with multiple hidden layers 
between input and output. Millions of coupling parameters, optimized on a training set to 
achieve the  proper relation between input and output. 

Deep learning may be either unsupervised (unlabeled training set), or supervised (e.g. 
learning to  identify photos). 

High-dimensional classical data can be encoded very succinctly in a quantum state. In 
principle log N qubits suffice to represent a N-dimensional vector. Such “quantum Random 
Access Memory” (= QRAM) might have advantages for deep learning applications.

However, quantum deep learning is hampered by input/output bottlenecks.

Perhaps a quantum deep learning network can be trained more efficiently, e.g. using a 
smaller training set. We don’t know. We’ll have to try it to see how well it works. 

Might be achieved by a (highly controllable) quantum annealer, or other custom quantum 
device unsuited for general purpose quantum computing. How robust to noise?

Perhaps more natural to consider quantum inputs / outputs; e.g. better ways to 
characterize or control quantum systems. Quantum networks might have advantages for 
learning about quantum correlations, rather than classical ones. 

Classical deep learning has many applications to quantum science and technology.



Quantum linear algebra
QRAM: an N-component vector b can be encoded in a quantum state |b 〉 of log N 
qubits.

Given a classical N X N input matrix A, which is sparse and well-conditioned, and 
the quantum input state |b 〉 , the HHL (Harrow, Hassidim, Lloyd 2008) algorithm 
outputs the quantum state |y〉 = |A-1 b〉, with a small error, in time O(log N). The 
quantum speedup is exponential in N.

Input vector |b〉 and output vector |y〉 = |A-1 b〉 are quantum! We can sample 
from measurements of |y〉 .

If the input b is classical, we need to load |b〉 into QRAM in polylog time to get the 
exponential speedup (which might not be possible). Alternatively the input b may 
be computed rather than entered from a database.

HHL is BQP-complete: It solves a (classically) hard problem unless BQP=BPP.

Example: Solving (monochromatic) Maxwell’s equations in a complex 3D 
geometry; e.g., for antenna design (Clader et al. 2013). Discretization and 
preconditioner  needed. How else can HHL be applied?

HHL is not likely to be feasible in the NISQ era. 



Speeding up semidefinite programs (SDPs)
Given N X N Hermitian matrices C, {A1, … ,Am} and real numbers {b1, …, bm}, 
maximize tr(CX) subject to tr (Ai X) ≤ bi, X ≥ 0.

Many applications, classically solvable in poly(m,N ) time.

Suffices to prepare (and sample from) Gibbs state for H = linear comb. of input 
matrices. Quantum time polylog(N) if Gibbs state can be prepared efficiently 
(Brandão & Svore 2016). Output is a quantum state ρ ≅ X.

When can the Gibbs state be prepared efficiently?
-- H thermalizes efficiently.
-- Input matrices are low rank (Brandão et al. 2017).

Can be viewed as a version of quantum annealing (QA) where Hamiltonian is 
quantum instead of classical, and where the algorithm is potentially robust with 
respect to small nonzero temperature.

The corresponding Gibbs state can be prepared efficiently only for SDPs with special 
properties. What are the applications of these SDPs?



Good News / Bad News
Quantum computers simulate quantum systems in real time, not imaginary time.

That’s a shame, because imaginary time evolution (in some cases) is an efficient 
way to prepare ground states. 

But it’s okay, because Nature evolves in real time, too. 

And simulation of real time evolution for highly entangled quantum many-body 
systems (including quantum field theories) is presumed to be hard classically.

Applications include real-time dynamics in strongly correlated quantum many-
body systems, quantum chemistry, strongly-coupled relativistic quantum field 
theory, QCD, nuclear physics, …

We work with the Hamiltonian (not the action), so Lorentz covariance is not 
manifest. We have to pick an inertial frame, but can obtain frame-independent 
results (if we’re careful). 



What problem does the algorithm solve?

Scattering problem: given initial (incoming) state, sample accurately 
from the distribution of final (outgoing) states. 

Vacuum-to-vacuum probability in the presence of spacetime-
dependent sources coupled to local observables. 

Correlation functions, e.g., for insertions of unitary operators.

Correlation functions and bulk observables at nonzero temperature 
and chemical potential. 

To probe, e.g., transport properties, formulate a simulation that 
models an actual experiment. 



How to regulate?
Momentum space is natural for diagonalizing free field theory 
Hamiltonian, and formulating perturbation theory.

Renormalization group can also be formulated in momentum 
space. 

But real space is better suited for simulation, because the 
Hamiltonian is spatially local. 

We define fields on lattice sites, with lattice spacing a, a source of 
error. “Bare” parameters. Smaller lattice spacing means better 
accuracy, but more qubits to simulate a specified spatial volume. 

Fields and their conjugate momenta are unbounded operators. We 
express them in terms of a bounded number of qubits, determined 
by energy of the simulated process. 

Doing better: RG-improved lattice Hamiltonians? Tensor network 
constructions, e.g., c-MPS, c-MERA, wavelets?



What to simulate?
For example, a self-coupled scalar field in D=2, 3, 4. 

φ φ λ φ−  Π + ∇ + 


= +
∫ 1 2 2 2 2 4

0 0
1 1 1 1( )
2 2 2 4!

DH d x m

Without the φ 4 term, a Gaussian theory which is easy to simulate 
classically (noninteracting particles). 

With this interaction term, particles can scatter. The dimensionless 
coupling parameter is λ/m4-D. Classical simulations are hard when 
the coupling is strong. 

Hardness persists even at weak coupling, if we want high precision, 
or if particles interact long enough to become highly entangled.

Summing perturbation theory is infeasible, and misses 
nonperturbative effects. 

We assume theory has a mass gap.



A simulation protocol
Input: a list of incoming particle momenta.
Output: a list of (perhaps many) outgoing particle momenta.

Procedure:
(1) Prepare free field vacuum (λ0 = 0).
(2) Prepare free field wavepackets (narrow in momentum).
(3) Adiabatically turn on the (bare) coupling.
(4) Evolve for time t with Hamiltonian H.
(5) Adiabatically turn off interaction.
(6) Measure field modes. 

Assume no phase transition blocks adiabatic state preparation.

Alternative: create particles with spacetime dependent classical 
sources (better if there are bound states). Simulate detector POVM. 

Lorentz invariance brutally broken in lattice theory, recovered by 
tuning bare H. (Ugh.) Also tune for achieve ma << 1.



Example: φ 4 theory in D=3 spacetime dimensions
Error ε scales with lattice spacing a as ε =O(a2).

Number of qubits Ω needed to simulate physical volume V is
Ω = V/a2 = O(1/ε). 

Gaussian state preparation (matrix arithmetic) uses Ω2.273 gates. 
(though a customized algorithm exploiting translation invariance 
does better). 

Scaling with energy E: number of gates = O(E6). 

Factor E from Trotter error, E2 from lattice spacing a ~ 1/E, E3 from 
diabatic error. 

Dominant diabatic error comes from splitting of 1 → 3 particles, for 
which energy gap ~ m2/E.

Thousands of logical qubits for 2 → 4 scattering with 1% error at E/ 
m = O(1). Yikes!
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